	Contra Costa College

	Course Outline

	Department & Number
	COMP 260
	Number of Weeks
	18

	Course Title
	Introduction to Programming - Scheme
	Lecture Hours By Term
	54

	Prerequisite
	
	Lab Hours By Term
	54

	Challenge Policy
	
	*Hours By Arrangement
	

	Co-requisite
	
	Units
	4

	Challenge Policy
	
	
	

	Advisory
	Math-171

	*HOURS BY ARRANGEMENT:
	
	Hours per term.

	 ACTIVITIES: (Please provide a list of the activities students will perform in order to satisfy the HBA requirement):

	

	COURSE/CATALOG DESCRIPTION

	This course provides an introduction to computer science using the Scheme programming language and techniques of functional programming. Topics include methodologies for program design, development, style, testing, and documentation; algorithms, control structures, sub-programs, and elementary data structures. This course covers functions and list structures; operations on lists, recursion, iteration, programming style; and Lambda expressions. The course includes laboratory problems using a Scheme complex.

	COURSE OBJECTIVES:

	At the completion of the course the student will be able to:

	Describe the elements of programming and the use of data abstractions

	Describe the difference between functional and imperative programming.

	Analyze, evaluate and choose the Scheme functions appropriate to solve a particular programming problem. Functions covered include: car, cdr, cons, define, let, let*, length, quote, quasiquote, member, append, equal?, list?, number?, null?, zero?.

	Apply recursion effectively. Particularly techniques to convert functions using embedded recursion to become tail recursive functions.

INTENDED STUDENT LEARNING OUTCOMES:
	Students will be able to sucessfully design, implement, test, and debug a program that uses each of the following fundamental programming constructs: basic computation, simple I/O, standard conditional and recursive structures, and functions.

	Students will be able to compare iterative and recursive execution patterns for elementary problems such as factorial.

 COURSE CONTENT (Lecture):

	The Elements of Programming

	Procedures and the Processes They Generate

	Formulating Abstractions with Higher-Order Procedures

	Introduction to Data Abstraction

	Hierarchical Data and the Closure Property

	Symbolic Data

	Multiple Representations for Abstract Data

	Assignment, Local State, and The Environment Model of Evaluation

	Modeling with Mutable Data, including Streams

COURSE CONTENT (Lab):
	Programming projects from the textbook

	Finding errors in computer programs that appear correct

	Designing algorithmic approaches to stated problems

	METHODS OF INSTRUCTION:

	Lecture

	Demonstration of concepts

	Practice Exercises and Lab Team Assignments

	Discussions

	INSTRUCTIONAL MATERIALS:

NOTE: To be UC/CSU transferable, the text must be dated within the last 7 years OR a statement of justification for a text beyond the last 7 years must be included.

	Textbook Title:
	Structure and Interpretation of Computer Programs

	Author:
	Harold Abelson

	Publisher:
	WCB/McGraw-Hill

	Edition/Date:
	1999

	Textbook Reading Level:
	College-level

	Justification Statement:
	This is the fourth printing and the most current edition.

	
	

OUTSIDE OF CLASS WEEKLY ASSIGNMENTS:

Title 5, section 55002.5 establishes that a range of 48 -54hours of lecture, study, or lab work is required for one unit of credit. For each hour of lecture, students should be required to spend an additional two hours of study outside of class to earn one unit of credit.

· State mandates that sample assignments must be included on the Course Outline of Record.

	 Outside of Class Weekly Assignments
	Hours per week

	Weekly Reading Assignments (Include detailed assignment below, if applicable)
	2

	Textbook Reading assignments

	Weekly Writing Assignments (Include detailed assignment below, if applicable)
	2

	Define a procedure that takes three numbers as arguments and returns the sum of the squares of
the two larger numbers.

	Weekly Math Problems (Include detailed assignment below, if applicable)
	

	

	Lab or Software Application Assignments (Include detailed assignment below, if applicable)
	2

	Two (2) computer programming projects per week

	Other Performance Assignments (Include detailed assignment below, if applicable)
	

	

STUDENT EVALUATION: (Show percentage breakdown for evaluation instruments)

	· Course must require use of critical thinking, college-level concepts & college-level learning skills.

· For degree credit, course requires essay writing unless that requirement would be inappropriate to the course objectives. If writing is inappropriate, there must be a requirement of problem-solving or skills demonstration.

	10
	%
	Essay (If essay is not included in assessment, explain below.)

	

	
	%
	Computation or Non-computational Problem Solving Skills

	
	%
	Skills Demonstration

	40
	%
	Objective Examinations

	
	
	Other (describe)

	15
	%
	Written Homework Assignments, which involves computational and/or non-computational problem solving skills

	35
	%
	Programming Projects, which involves computational and/or non-computational problem solving skills

	
	%
	

	 GRADING POLICY: (Choose LG, P/NP, or SC)

	
	Letter Grade
	
	Pass / No Pass
	x
	Student Choice

	90% - 100% = A
	70% and above = Pass
	90% - 100% = A

	80% - 89% = B
	Below 70% = No Pass
	80% - 89% = B

	70% - 79% = C
	
	70% - 79% = C

	60% - 69% = D
	
	60% - 69% = D

	Below 60% = F
	
	Below 60% = F

	or

	70% and above = Pass

	Below 70% = No Pass

	Prepared by:
	Tom Murphy

	Date:
	SP14

Revised form 10/13
